Summer 2019 CATALYST Research Project — Bits over the Air

Module 1: MATLAB Tutorial Part 1

© 2019 Christoph Studer (studer@cornell.edu); Version 0.1

The main goal of this module is to learn the basics of MATLAB, which is the main software we use
throughout this project. In particular, you will learn how to evaluate simple mathematical expressions.
Note that it will be helpful to not only perform the main activities, but also to try out all of the examples
we show during our explanations. Remember: Whenever you are stuck, have questions, or are interested
in learning more details about a specific aspect, please ask us—we are here to help!!

1 Introduction

MATLAB is a software package that is targeted to numerical computation. Initially, MATLAB was designed
for solving linear algebra-type problems using matrix-vector operations and hence, its name is derived
from MATrix LABoratory. Nowadays, MATLAB is used by over 3 million users worldwide and is the
de-facto standard software for scientific computing in industry and academia in a broad range of fields,
including engineering, science, and economics. Unfortunately, MATLAB is not free (it is, in fact, expensive;
a license ranges from $99 for student use to $2,150 for professional use) but you will have access to the
newest version of MATLAB in the ACCEL laboratoriesﬂ One of the key advantages of MATLAB is the
fact that it is relatively easy to use. The goal of today’s lab is to learn the basics of MATLAB using simple
examples. Please remember that we will use MATLAB throughout this project with the goal of designing
an acoustic communication system. Hence, everything you will learn in this module will become very
useful later—please keep this module as a reference.

1.1 How to Start MATLAB

We will use Microsoft Windows in the ACCEL labs for this research project. To open MATLAB, first have
one of the Program Assistants to log into a computer and then, simply click on the START button and
select MATLAB R2019a. It usually takes a few seconds for MATLAB to start (you first see a splash screen
showing the MATLAB logo and the version number). Another way to open MATLAB is to press the search
button and type MATLAB and start it from there. After loading MATLAB, you should see the desktop that
looks like the one in Figure [l The MATLAB desktop consists of three main panels:

¢ Left: “Current Folder”” — This panel is used to access and manage files, functions, and scripts.

¢ Center: “Command Window” — This panel is used to enter MATLAB commands at the command
line, which is indicated by the prompt >>

¢ Right: “Workspace”” — This panel shows variables that have been defined in your workspace.

1Free, open-source alternatives to MATLAB exist, such as GNU Octave, but they are unfortunately not 100% compatible. If you
are interested in playing around with GNU Octave, you can download it here for free: https://www.gnu.org/software/octave/

mailto:studer@cornell.edu
https://www.gnu.org/software/octave/

Summer 2019 CATALYST Research Project — Bits over the Air

In case some of these panels are missing or the desktop looks differently, you can restore the default
appearance by clicking on the “Layout” icon and selecting the “Default layout.”

4\ MATLAB R2019a - academic use - o x
. = B umentation |
3 FE - > alyze Code @) Preferen e (-
g Frnaa = 2
) Open Varae ~ n 9 Request Support
New New New O i

Figure 1: Default appearance of the MATLAB desktop.

1.2 First Steps in MATLAB

MATLARB is basically a very powerful numerical calculator. In the Command Window, simply type 1+2
and press enter (or return). As you can see, MATLAB immediately evaluates the expression 1 42 = 3 and
shows the result. The Command Window should looks as follows:

>> 1+2
ans =

3

Here, ans stands for the answer of the expression you just evaluated. The prompt >> and the blinking
cursor indicates that MATLAB is ready to accept another command. As in a calculator, you can also group
operations using parentheses, e.g., you can compute 3* (1+2) where * is the multiplication operator.

Activity 1: Try do do some more math!

MATLARB is extremely powerful and allows many mathematical operators you may be familiar
with. For example, if you would like to compute the square root of 9, simply type sqrt (9) and
press enter. Remember that function names are case sensitive! Other operators or functions
are 3”2 if you want to square the number 3 or exp (1) if you want to evaluate the exponential
function of 1, i.e., e! ~ 2.7183. Fractional numbers can be entered either by typing 0.3333 or
directly as fractions 1/3. Here, the operator / performs a division.

Note that MATLAB represents per default all numbers as double-precision floating-point
numbers (please ask us if you want to know more about floating-point numbers; but the details
are not important for this project), which are sufficiently accurate for our purpose. However,
you should remember that MATLAB often does not show all digits, which is why 0.3333 and

Summer 2019 CATALYST Research Project — Bits over the Air

1/3 are not the same numbers.

Use MATLAB to carry out a few basic calculations; Table|[1]lists some more functions you
can use. For example, try to compute cos(27) (the answer should be 1). If you do not remember
what the exact value of 7t is, note that pi in MATLAB is a predefined constant!

Table 1: Summary of some basic MATLAB functions.

Function Description

abs Computes the absolute value

sign Signum function (extracts the sign of a number)
sqrt Square root

sin Sine function

cos Cosine function

exp Exponential function

log Natural logarithm

round Round towards nearest integer

max Finds the maximum in a vector

If you make a mistake in your mathematical expression (or MATLAB does not understand what you
were trying to do), an error message will be displayed. Error messages are shown in red color and are
generally very precise in pointing to the problem—sometimes MATLAB even recommends a solution
(which, however, may not always be what you intended). For example, type exn (1) instead of exp(1) and
MATLAB will indicate that what you typed is not a defined function or a known variable. At the same
time, MATLAB suggests to write exp (1) instead.

1.3 MATLAB Help

Since MATLAB provides a large number of functions, it also has a very rich documentation built in. To get
help about any of the available MATLAB functions, simply type

help function_name

and press enter (where function_name can be any of the MATLAB functions). For example, try

help exp

which explains how to use the exponential function and provides links to related functions. To get more
details, you can click the link below “Reference page in Help browser,” which opens a detailed Help
window with even more explanations. Alternatively, you can select the function’s name with your mouse
and then press “F1” on the keyboard, so that the MATLAB help window for that function shows up. In the
same Help browser, you can quickly search for all of the available MATLAB functions. As you will see
during this project, the help function and “Help browser” are extremely useful.

1.4 Variables

In MATLAB, you often want to temporarily store and re-use information, such as numbers, vectors (a
one-dimensional array of numbers), matrices (a two-dimensional array of numbers), or strings (an array of
characters to form a sentences or text). Variable names in MATLAB are case sensitive and they can contain

3

Summer 2019 CATALYST Research Project — Bits over the Air

up to 63 characters (but short variable names are often easier to remember). Variable names must start
with a letter and can be followed by letters, digits, and underscores. For example, type

a=1

“_r

and press enter. MATLAB creates the variable named “a” and adds it to the workspace and assigns the
value 1; this assignment is also shown in the Command Window. At the same time, MATLAB confirms
that you stored the value 1 in the variable:

>> a =1

1

In addition, you can see that the variable a now contains the value 1 in the Workspace Window (on the
right side of the MATLAB desktop). From now on, you can type a at the MATLAB prompt to access the
value stored in this variable. For example, if you type

a+t2

you can see that MATLAB added 1 (which was stored in the variable a) to the value 2. As the name
“variable” implies, you can change (or redefine) the value of the variable a. Simply type

a =10

and press enter to assign the new value 10 to variable a. You can see in the Workspace that the variable a
now contains the value 10.

Activity 2: Add and subtract two variables

Familiarize yourself with the concept of variables. Create two variables: var1l and var2. Assign
the value 10 to var1 and the value 5 to var2. Add var1 to var2; you should obtain 15. From
var1, subtract var2; you should obtain 5. Try to change the values of both variables to whatever
you like and observe your changes in the Workspace.

1.5 Vectors

Instead of numbers, you can also store vectors in variables. A vector is nothing but a multidimensional
array of numbers. As you will see later, audio signals, for example, can be represented as vectors, where
each entry of the vector contains the amplitude value of the signal at a moment in time. In MATLAB, you
can create either row or column vectors. To define a row-vector, simply type

v = [2,4,6,8]

which creates a four-element (or four-dimensional) row-vector containing the values 2, 4, 6, and 8. If you
inspect the Workspace Window, then you can see a vector variable named v containing four numbers. If
you type v in the Command Window, then you will see the contents of the entire row vector:

Summer 2019 CATALYST Research Project — Bits over the Air

Sometimes it is useful to access a single entry of a vector. This is easy. To access the first entry of the
vector v, simply type v(1). In general, to access the kth entry of a vector, simply type v (k). (Here, k should
be replaced by a number; you can also use variables to index vectors—more about this later.) Also note
that this implies that vectors in MATLAB are indexed starting by 1. If you try to access an entry that is not
defined, e.g., if you type v(5), MATLAB will throw an error.

If you want to create a column-vector, simply type

w = [2;4;6;8]
and you can see that the values are now stacked on top of each other (called a column vector):

>> w = [2;4;6;8]

o O PN

Accessing entries for column vectors is the same as for row vectors: simply type w(k), where k should be
replaced by a number ranging from one to four for this example. Note that you can convert a row vector
into a column vector by typing v' or a column vector into a row vector by typing w'. The mathematical
term for the ' operator is called the “transpose operator.” If you want to multiply all entries of a vector by
a scalar (for example, 5), you can simply type 5*w. Again, this works for both row and column vectors.

Activity 3: Add two column vectors

Sometimes we want to add two vectors. For example, you add two vectors if you want to play
two audio signals at the same time. In this case, you have to make sure that both vectors have
the same dimension (number of entries) and are either both row vectors or both column vectors.
(You should never add a column vector to a row vector or a row vector to a column vector.)

Create two variables (you can pick the variable names) containing column vectors of the
same length with different entries. Add both vectors using the + operator. You should observe
that the plus operator performs entry-wise addition of both vectors. Furthermore, the result
should also be a column vector of the same length as the two vectors you defined.

1.6 Strings

MATLAB can also store so-called “strings,” which are one-dimensional arrays of characters (letters).
Creating a string is super easy— simply type

test_string = 'MATLAB is a lot of fun!'

where you have to use the correct quote symbol '. If you found the correct quote symbol, then you should
see the following output:

>> test_string = 'MATLAB is a lot of fun!'
test_string =

MATLAB is a lot of fun!

Summer 2019 CATALYST Research Project — Bits over the Air

Strings are useful to define filenames or data that should be transmitted over the air. One particular aspect
we will use is to define filenames, for example

filename = 'test.wav'

which can be used to quickly load files in MATLAB—more about this later. One can also access each
character of the string independently. For example, to read out the second character of the filename string
defined above, simply type filename (2). The output should be the second character (or letter) “e.”

1.7 Automatically Generating Index Vectors

As you will see later, it is often extremely useful to create so-called index vectors that have a very specific
set of entries. For example, assume that you want to create a row vector containing all the integers from 1
to 100. Clearly, it would be extremely tedious to actually type all 100 numbers in MATLAB to create such a
vector. MATLAB enables one to create such vectors as follows:

a = 1:100

The first value (before the colon) indicates the start value; the second value (after the colon) indicates the
stop value. If you inspect the Workspace, you can see that the variable a is of type 1 x 100 double (this
implies that you created a row-vector with 100 entries). In case you want to extract the number of entries
of a vector, simply type

length(a)

In the above example, this command should result in 100 (as the row vector you just generated has 100
entries). This means you have created a 1 x 100 array of double-precision numbers, which is nothing but
a 100-dimensional row vector. If you double-click the variable a in the Workspace, a Variables window
opens. Here, you can see the individual entries of this variable; you can also change the individual entries
by editing the values. Simply press the X on the top-right corner of the Variables window to close it.

Activity 4: Read out multiple entries of a vector

Note that index vectors with integer valued entries are particularly useful to read out multiple
values at once from a vector. Define a vector testvector=[2,4,6,8,10]. Assume that you
want to read out the values of testvector corresponding to the indices {2, 3,4}, then you can
simply type testvector(2:4) which results in the output [4,6,8]. Equivalently, you can first
define an index vector called index=2:4 and then type testvector (index), which reads the
values of the vector testvector at the indices contained in the vector index. Try to read out the
values at indices {3,4,5} from the vector called testvector; this should result in {6,8,10}.

Assume that you want to generate a vector with entries between 2.5 and 5 but with 0.5 increment
between neighboring values; this is known as arithmetic progression. To generate such a vector, type

b=2.5:0.5:5

This command generates a vector with six entries and exactly the properties described above. The first
value (before the first colon) indicates the start value, the second value (after the first colon and before the
second colon) indicates the increment, and the third value (after the second colon) indicates the stop value.

It is often useful to generate vectors with N equally-spaced values between x1 and x2. For example, 12
values between —8 and +10. To generate such vectors, simply use the 1inspace command:

6

Summer 2019 CATALYST Research Project — Bits over the Air

¢ = linspace(-8,+10,12)

This command generates a 12-entry vector starting with —8 and ending in +10 with equally spaced entries
(the spacing between entries is approximately 1.6364).

Activity 5: Generate column vectors with arithmetic progression

Generate a column vector with variable name vec1 with entries from —10 to +10 with spac-
ing 0.1. First use vec1=-10:0.1:10 to create a column vector and transpose the result. Note
that if you want to convert this row vector into a column vector, simply type vecl' in the
Command Window. If you want to assign this column vector to variable vec1, then simply type
vecl=vecl'. Remember: The equality operator in MATLAB is an assignment operator (it as-
signs the value or variable on the right to the variable on the left) rather than a mathematical
equality operator (which you probably remember from calculus classes).

Now, use the linspace command with the appropriate arguments to generate the same
vector; call the vector vec2. Then, you need to transpose the resulting vector as the linspace
command generates row vectors. Both vectors vec1 and vec2 should now be exactly the same.

It is now time to take a quick break from all the hard work. You have already learned a lot of the most
important MATLAB functions we will use throughout the project. Type why in the Command Window
and press enter to discover one of MATLAB's easter eggs; repeat the same command to get more answers
to some of the most pressing questions.

	Introduction
	How to Start MATLAB
	First Steps in MATLAB
	MATLAB Help
	Variables
	Vectors
	Strings
	Automatically Generating Index Vectors

