
Summer 2019 CATALYST Research Project – Bits over the Air

Module 2: MATLAB Tutorial Part 2

© 2019 Christoph Studer (studer@cornell.edu); Version 0.2

The main goals of this module are (i) to learn how to evaluate and plot functions and (ii) how to write
MATLAB scripts, which simplifies automation of MATLAB commands. As before, it will be helpful to not
only perform the main activities, but also to try out all of the examples we show during our explanations.
Remember: Whenever you are stuck or are interested in learning more details about a specific aspect,
please ask us—we are here to help!!

2 Evaluating and Plotting Simple Functions

MATLAB is particularly good at quickly evaluating functions and plotting the results. We will now
learn the basics of how to compute functions and how to plot these functions in MATLAB. We will make
extensive use of function evaluation and plotting throughout this project.

2.1 Evaluating Functions

Since MATLAB is basically an overpowered calculator, it can also numerically evaluate arbitrary functions.
Assume, for example, that you want to evaluate the quadratic the function f (x) = x2 for values in the
interval x ∈ [−1,+1]. Since it is not possible to store and manipulate continuous quantities in computers,
you have to first discretize the interval in MATLAB, by generating a vector that contains a discrete set of
values in this interval. Generate a vector for a few values in the interval [−1,+1]. This can be done by
using the linspace command. For example, define

x = linspace(-1,+1,5)

which generates a row vector with 5 equally-spaced values in the range −1 to +1 as follows:

>> x = linspace(-1,+1,5)

x =

-1.0000 -0.5000 0 0.5000 1.0000

We will now evaluate the quadratic function f (x) = x2 on these values. To do so, type

fx = x.^2

which generates a vector called fx that contains the function values of the quadratic function evaluated at
the values contained in the vector x:

8

mailto:studer@cornell.edu

Summer 2019 CATALYST Research Project – Bits over the Air

>> fx = x.^2

fx =

1.0000 0.2500 0 0.2500 1.0000

Note that the variable name fx was arbitrary. As you may have observed, instead of x^2, we used the
MATLAB command x.^2, where we use an additional dot before the exponent (or power) operator “^”.
This additional dot implies that we are applying the exponent operator on every entry of the vector x
separately. If you try to evaluate x^2, then MATLAB throws an error and actually informs you to “Use
POWER (.^) for elementwise power.”

Activity 6: Evaluate a general quadratic function

You are probably familiar with general quadratic functions of the form f (x) = ax2 + bx + c
where the parameters a, b, and c determine the shape of the function. Imagine you want to
evaluate the function for the following parameters a = 1, b = −1, and c = 2. First, define
three variables a, b, and c with the values as given above. Then, generate the base points
x = {−2,−1, 0,+1,+2} using either the linspace command or the “colon” operator (both
work equally well in this case). Finally, evaluate the function

fx = a*x.^2+b*x+c

at the base points x = {−2,−1, 0,+1,+2}. You should obtain the function values f (−2) = 8,
f (−1) = 4, f (0) = 2, f (+1) = 2, and f (−2) = 4. You can easily verify that these values are
correct for the given parameters. Finally, type

plot(x,fx)

and hit enter. As it turns out, a new window opened and you have just plotted the function f (x)
at the base-points x = {−2,−1, 0,+1,+2}. Unfortunately, five base-points are not enough to see
that this is indeed a quadratic function. Increase the resolution of the base-points from 5 points
between −2 and +2 to 50 points, re-evaluate the function again (by typing fx=a*x.^2+b*x+c),
and plot the function again by executing the plot command: plot(x,fx). You should see a
smooth curve that represents your quadratic function with a clear minimum at x = 0.5.

2.2 Function Plotting

In the above activity, you have already plotted your first function. We will frequently use the plot function
to inspect the signals we want to transmit over the acoustic channel. There are various commands that
you can use to plot data in MATLAB. You can plot multiple curves with different line-styles and colors,
and add legends, grids, labels; see the example below that generates a neat-looking 2D plot.

% generate sine and cosine functions

x = -4*pi:0.1:4*pi;

y = sin(x);

z = cos(x);

% generate a nice plot

9

Summer 2019 CATALYST Research Project – Bits over the Air

h = figure(1)

plot(x,y,'b-','LineWidth',3)

hold on

plot(x,z,'r:','LineWidth',3)

hold off

xlabel('x axis','FontSize',14)

ylabel('y axis','FontSize',14)

legend('sine','cosine')

grid on

set(gca,'FontSize',14)

axis([min(x),max(x),-1.1,+1.1])

By running the instructions as in the code above, you will produce the plot shown in Figure 2. The first
line defines a MATLAB comment, which starts with % ; everything on that line that follows this command
will not be executed. The next three lines define the sine and cosine functions in the interval [−4π,+4π].
Note that the semicolon at the end of these three lines suppresses MATLAB from displaying any output.
This can be particularly useful if you define very long vectors. The remaining lines are used to plot the
two functions. The details are explained as follows:

-10 -5 0 5 10

x axis

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
 a

x
is

sine

cosine

Figure 2: A nice plot generated in MATLAB.

• The command h = figure(1) generates a new figure with number 1. You can use other numbers to
have multiple plots open at the same time. The variable h contains the function “handle” of your
figure and is only required if you want to save your plot.

• The command plot(x,y,'b-','LineWidth',3) plots the sine function at base points x. The com-
mand 'b-' draws a blue solid line. The two commands 'LineWidth',3 increase the line thickness.

• The command hold on makes sure that you can overlay more lines.

10

Summer 2019 CATALYST Research Project – Bits over the Air

• The command plot(x,z,'r:','LineWidth',3) plots the cosine function at base points x. The
command 'r:' draws a red dotted line.

• The command hold off makes sure that you can no longer overlay more lines. If you would plot
another function, you would now overwrite all functions drawn so far.

• The command xlabel('x axis','FontSize',14) labels the x-axis of the plot with “x axis.” The
two commands 'FontSize',14 increase the font size.

• The command ylabel('y axis','FontSize',14) labels the y-axis of the plot with “y axis.” The
two commands 'FontSize',14 increase the font size.

• The command legend('sine','cosine') creates a legend that labels the first and second curve
with “sine” and “cosine,” respectively.

• The command grid on turns on vertical and horizontal grid lines.

• The command set(gca,'FontSize',14) increases the font size of the x-axis and y-axis numbers.

• The command axis([min(x),max(x),-1.1,+1.1]) defines the range in which the plot is generated.
The first two arguments min(x) and max(x) make sure that the x-axis is plotted from −4π to +4π.
The second two arguments make sure that the y-axis is plotted in the range from −1.1 to +1.1.

Note that this is a quite complicated plot example and it is often sufficient to just type

h = figure(1)

plot(x,y)

hold on

plot(x,z)

hold off

especially if you know what you are plotting. However, if you need your plot for a presentation or, in
general, if you show your plot to someone else (someone who is not familiar with the functions you are
plotting), then it is always a good idea to make a clean plot as the elaborate example above.

If you would like to add a title to your figure, then simply use the following command after plotting

title('this is a figure title')

If you want to save a copy of your figure to your hard-drive, then type

print(h,'-loose','-depsc','testplot.eps')

where “testplot” is the filename and “eps” is the file type. There are other file types that you can save.
Simply use the help function for the print command to obtain more details. Another approach to save
your figure is to click “File” in the figure window and “Save As...”. You can now select the file name as
well as the format (common file formats are eps and png; the latter can be imported easily in PowerPoint).

Activity 7: Create a nice plot of a function of your choice

Use the above example to generate a nice plot of a function of your choice. It’s up to you what
you would like to plot.

It is now—once again—time to take a break. Function evaluation and plotting can be quite tedious, but
is actually one of the key strengths of MATLAB. Do not worry if you forgot some of the details. Type the
commands image, penny, and spy to discover some of MATLAB’s easter eggs.

11

Summer 2019 CATALYST Research Project – Bits over the Air

3 Scripts and Functions in MATLAB

In MATLAB, you often want to repeat the same set of commands, without manually typing them into the
Command Window. In what follows, you will learn how to write MATLAB scripts, which allow you to
execute a set of commands by the push of a button. You will also learn how to write your own MATLAB
functions, such as the exp or sin functions.

3.1 MATLAB Scripts

A MATLAB script is a file that contains a set of MATLAB commands. You can then execute this file
and it will automatically run the script line-by-line, as if you would type the commands manually in
the Command Window. To create a new MATLAB script, press the “+ New” icon on the top left of the
MATLAB desktop and select “Script.” This command opens a new script right above the Command
Window (assuming that you have the default view). Save the script by pressing the “Save” icon under the
name “test.m”. In the Current Folder window (on the left side of the desktop), you should now see a file
called “test.m”. Write the following commands in the Editor and save the script again:

a = 1;

b = -1;

c = 2;

x = linspace(-1,1,50);

fx = a*x.^2+b*x+c;

plot(x,fx);

Your desktop should now look similar to that in Figure 3. You can now execute the script by pressing
the “Run” icon at the top. This will execute the script “test.m” line-by-line, which includes (i) setting up
the parameters, (ii) generating an array of values in the interval [−1,+1], (iii) evaluating the quadratic
function, and (iv) plotting a figure of the quadratic function. It is now very easy to change one or multiple
parameters (for example, set a=-1;) and to re-run the script by pressing the “Run” icon at the top. Instead
of manually typing one command after each other, you can now quickly change the parameters and
re-generate the plot.

Figure 3: MATLAB desktop with the Editor containing a simple script.

12

Summer 2019 CATALYST Research Project – Bits over the Air

There exists another way to execute this MATLAB script. Go to the Command Window and type test,
without the suffix “.m”. Press enter. This runs the script line-by-line. Note that you simply have to type
the name of the script to run it. Note that this also means that you should not call your script by a name
of an already existing MATLAB function (e.g., calling a function “exp.m” would cause issues with the
built-in exp function). Another common mistake is to call a variable the same name as an existing function.
For example, never define a variable called sum as there is a MATLAB sum command! Also be careful that
the function you are trying to call must be visible in the Current Folder window (on the left side). If you
are in another folder, then MATLAB cannot find the script and will throw an error. This is a simple mistake
that happens all the time—even to us.

Activity 8: Create a new MATLAB script

Create a new MATLAB script called “test plot.m” that plots the reciprocal function f (x) = 1/x
in the interval [−5,+5]. Note that in order to evaluate a function on a vector of base-points you
have to use the dot-notation as follows:

fx = 1./x

Execute your script. You can then add other terms to your function to plot whatever you want.

3.2 MATLAB Functions

One major disadvantage of MATLAB scripts is the fact that you cannot run the same script for different
parameters, unless you manually edit the script and run it again. Note that if you run, for example, the
natural logarithm function with the argument 5 by typing log(5) you can easily run the same function
with another argument (e.g., log(10)). Clearly, you do not have to edit the logarithm function. To create
functions that allow one to pass one or multiple parameters, we have to generate a MATLAB function.

Generating MATLAB functions is as easy as generating MATLAB scripts. Press the “Home” tab on the
top left of the MATLAB desktop and then, the “+ New” icon. By selecting “Function,” MATLAB creates
an untitled function with input arguments and output arguments. For example, the file in the Editor may
contain the following contents:

function [output_args] = untitled5(input_args)

%UNTITLED5 Summary of this function goes here

% Detailed explanation goes here

end

Save the function under the name “test function.m” and change the function name “untitled5” to
“test_function”. It is important that the function name is identical to the name of the MATLAB file
(without the suffix “.m”). You can also right-click on “untitled5” and select “Replace function name by file
name,” which automatically sets the function name to the file name.

Let us now generate a simple test function. Modify the file in the Editor to contain the following
contents and save the file:

function [y] = test_function(x)

%test_function that computes the square of the input x

% y = test_function(x)

% x : input

% y : output (y=x^2)

13

Summer 2019 CATALYST Research Project – Bits over the Air

y = x.^2;

end

This test function has one input argument x and generates one output y. The function simply computes
the square of the input argument. For example, if you type

test_function(2)

in the Command Window, then you see that the function output is, as expected:

>> test_function(2)

ans =

4

Also, if you type help test_function, then you can see the comments (which start with %) right below
the function declaration. Note that you have to enter this information for your own function.

Functions may contain multiple lines (similar to scripts) and one can pass one or multiple arguments
(which is different to scripts); passing values to functions is particularly useful (as you will see later). To
generate a function with multiple input arguments and multiple outputs, modify your test function as
follows and save the file:

function [z,w] = test_function(x,y)

%test_function that computes x+y and x*y

% [z,w] = test_function(x,y)

% x : input1

% y : input2

% z : output1 (z=x+y)

% w : output2 (w=x*y)

z = x+y;

w = x.*y;

end

If you now type in the Command Window

[z,w] = test_function(1,2)

then MATLAB generates the following two outputs

>> [z,w] = test_function(1,2)

z =

3

w =

2

and directly assigns the outputs to the variables z and w.

14

Summer 2019 CATALYST Research Project – Bits over the Air

Activity 9: Create a new MATLAB function

Create a new MATLAB function called ‘test_recip.m” that takes x as an argument and com-
putes the reciprocal function f (x) = 1/x as output. Execute the function and check whether the
result makes sense. You can then modify your function to compute whatever you want.

3.3 Clearing the Workspace

If you want to clear all variables in the Workspace, then simply type clear and press enter. If you want to
remove everything (including functions etc.), then you can also type clear all. If you want to remove a
specific variable, for example annoying_var, then you can type clear annoying_var. If you are annoyed
by the screen being full with past commands you typed, then type clc, which clears the Command
Window. If you still have a lot of figures open, then you can type close all, which closes all open figures.

Important: This tutorial covered most of the MATLAB commands used to evaluate and plot functions.
Do not worry if you think you may forget certain commands or if you are not 100% sure yet how to use
all of the learned material. We will repeat how to use the most important commands when necessary.
Also, whenever you have questions about MATLAB, feel free to ask one of us—we are here to help!

15

	Evaluating and Plotting Simple Functions
	Evaluating Functions
	Function Plotting

	Scripts and Functions in MATLAB
	MATLAB Scripts
	MATLAB Functions
	Clearing the Workspace

