
Summer 2019 CATALYST Research Project – Bits over the Air

Module 9: Synchronization

© 2019 Christoph Studer (studer@cornell.edu); Version 0.3

This module will teach you how to synchronize the receiver to the transmitter, which means that the
receiver learns when the transmitter decided to transmit information. So far we have ignored this important
aspect which is critical to virtually all existing communication systems. Note that we will use test channels
and will not perform any transmission over-the-air yet—the next module will perform the first truly
wireless communication. Remember: Please ask us in case you have questions!

9.7 Synchronization

In real-world communication systems, the receiver does not know when the transmitter decides to send
information. In general, the receiver has to “listen” to the incoming signals and decide when transmission
occurred. Your cell-phone, for example, has to continuously sense the signals coming from the antenna
and decide when a transmission occurs, e.g., when someone tries to call you. The process of detecting the
start of data transmission at the receiver side is known as synchronization. Synchronization was not needed
in the AWGN channel we used previously as everything was synchronized perfectly (transmission always
started at exactly the first sample, which never happens in practical systems). We now design a simple
synchronization scheme so that the receiver can detect when data transmission starts. We will then use
this synchronization method in the next module when communicating over the air.

To test our synchronization scheme, we will be using a new channel model that adds a variable delay
to transmission over the AWGN channel of the previous module. This variable delay emulates the fact that
transmission can occur at any time and the receiver has to identify the exact moment where transmission
occurred. To this end, we have created the following MATLAB function

y_noise = channel_AWGN_delay(y);

which adds a random delay before and after the transmission of the vector y. These delays model the fact
that the receiver does, in general, not know when exactly data transmission occurs.

Consider, for example, transmission of the digital AM signal from the previous modules. Figure 24
shows the effect of the channel model. The first figure shows the signal that we wish to transmit. The
second figure shows the output of this channel model. As you can see, this channel attenuates the transmit
signal, adds noise, and also a random delay at the beginning and the end of transmission. Our goal is now
to develop a method that detects the start of transmission (see the red vertical line in the third figure of
Figure 24). Finally, we will crop (or trim) the signal to only keep what has been transmitted. Note that in
order to perform cropping, we need to identify the start and the end of transmission. The start is detected
by the synchronization method; the end of transmission is easy to detect if one knows how many bits will
be transmitted and how many samples are used to transmit each bit.

To perform synchronization, we will be working with the rectified signal yr_rect. The principle of our
synchronization method is rather simple: We will detect the time instant of the first “strong” sample we

59

mailto:studer@cornell.edu


Summer 2019 CATALYST Research Project – Bits over the Air

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Time (secs)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

(a) Transmit signal.

0 0.05 0.1 0.15 0.2 0.25

Time (secs)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

(b) Received signal with delay.

0 0.05 0.1 0.15 0.2 0.25

Time (secs)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

(c) Start of rectified signal.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Time (secs)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

(d) Cropped signal.

Figure 24: Illustration of the main steps of synchronizing the receiver to the transmitter. Digital AM signal
at the transmitter (a); noisy received signal with a random delay caused by the channel (b); rectified signal
with detected transmission start (c); and cropped signal (d).

observe at the receiver. In the third figure of Figure 24 you can see that we detect transmission at exactly
this point—note that this is also the reason why we decided to always transmit a binary 1 as our first
symbol! (Remember that a binary 1 was mapped to a magnitude of 1.) The key question is what we mean
by “strong” sample. We can say that a sample is “strong” if it is about 0.5 times the magnitude of the
strongest signal we observe. Note that the threshold of 0.5 is rather arbitrary and may have to be adapted
later. To find the strongest signal in the rectified vector, simply use the command

yr_rect = abs(y_noise);

max_val = max(yr_rect);

In what follows, we claim that “strong” signals are larger than max_val*0.5. We now have to find the first
occurrence of such a “strong” signal. There are many ways to implement this in MATLAB and we are
using an extremely compact sequence of commands:

start_idx = find((yr_rect>max_val*0.5),1,'first');

Let us break this sequence down into separate pieces. The command (yr_rect>max_val*0.5) creates a
vector that contains zeros and ones. Zeros for the entries of yr_rect that are smaller than max_val*0.5

and ones for those that are larger than this threshold. The command find with the argument 'first'
finds the index of the first entry in the input vector that is 1. Note that this is exactly the first index of
the rectified receive vector yr_rect that exceeds the threshold max_val*0.5. Hence, the scalar start_idx
contains the start index of our transmission. Note that you can visualize this synchronization method as
shown in the third figure of Figure 24 using the following plot commands:

plot_signal(yr_rect,FS)

hold on

plot(start_idx/FS*[1 1],[-1.1,+1.1],'r-','LineWidth',3)

hold off

This overlays a vertical line at the extracted start index start_idx with the rectified signal yr_rect. If you
think that your start index is not correct, then you may have to play with the threshold parameter 0.5. Note
that with this test channel, a value of 0.5 works very well but for over-the-air experiments, this threshold
may not be working well anymore—trial-and-error may be required.

The final piece of our synchronization method is to crop the signal, i.e., to keep only the transmit signal
and remove the rest (the pre and post pauses). Since we know how many bits have been transmitted

60



Summer 2019 CATALYST Research Project – Bits over the Air

(by using the command length(bits)) and we know that we are using sine waves of length tx_len

samples for each bit, the transmit signal is of length tx_len*length(bits). As a consequence, cropping is
straightforward. Simply use the command

yr_rect = yr_rect(start_idx:start_idx+length(bits)*tx_len);

which keeps only the signal that is between the start index start_idx and the start index plus the length
of the transmit signal start_idx+length(bits)*tx_len. A typical output of this cropping procedure is
shown in the fourth figure of Figure 24. If synchronization succeeds, you should end up with a noisy
version of the transmit signal but without the random pauses at the start and end of the transmit signal.

Activity 36: Build the receiver

Write a MATLAB script that generates an AM modulated digital signal as in the last module,
passes the transmit signal through the provided AWGN channel that adds random delays, and
performs detection by following the steps described above. Include the synchronization method
we just described. If everything works correctly, then you should have zero transmission errors.
If you have transmission errors, then carefully go through all the steps in your script and
visualize the signals as done in Figure 24. In case you cannot find your mistake, do not hesitate
to ask us!

Important: The above synchronization method does not always work. First, it can be that there is a
noisy sample that occurs before data transmission and exceeds the threshold—in this case synchroniza-
tion would fail in a sense that our method thinks the transmission starts earlier than it actually does.
Second, it can be that the largest entry of yr_rect is extremely large (again due to noise). In that case,
max_val*0.5 would be very large as well, which could cause the synchronization method to miss the
start of transmission. In both cases, data transmission would fail spectacularly as we do not even know
when transmission starts. Hence, real-world communication systems are using very powerful synchro-
nization methods that are much more complicated than our simple threshold detector. If you want to
know more about such advanced methods, we can explain some of these methods and ideas!

Activity 37: Play with the threshold

Change the threshold max_val*0.5 in your synchronization algorithm. For example, use
max_val*0.1. You should see that the synchronization method “believes” that transmission
started much earlier than the actual transmit signal. You may even observe some transmission
errors which are a result due to synchronization errors. Change the threshold to max_val*0.99.
You should see that the synchronization “believes” that transmission started much later than the
actual transmit signal. Again, detection may fail completely—it may also happen that MATLAB
throws an error as the start point is so late that we cannot extract a signal of appropriate length...

Please keep in mind that in many cases if transmission over wireless channels fails, then it
can be due to an error in synchronization (and not necessarily due to noise or other reasons).
Hence, we urge you to always visualize the synchronization time instant as shown above!

9.8 Synchronize to Transmitter of other Team

You should now know how to play a digital AM signal through the loudspeakers and how to synchronize
the receiver to this signal, i.e., to identify the start of transmission. Before we try to receive information from
the transmitter, let us first see whether we can detect the start of transmission of a signal when transmitted

61



Summer 2019 CATALYST Research Project – Bits over the Air

from another computer. To this end, we teamed your group up with another group. Talk to us if you
do not remember the number of the other group. Also, if the other group is not ready yet, then postpone
the following activity! If the other group is ready, then open MATLAB on the nearest computer to the
other group and use your transmitter script to generate and play back your digital AM signal. The other
group’s task is to record your transmitted AM signal and perform synchronization only. Important: Do
not try to detect data just yet! Also, do NOT use the AWGN channel functions; use only a transmitter,
loudspeakers, a microphone, and your synchronization method!

Activity 38: Synchronize to other group’s transmitter

As outlined above, send a digital AM signal from one computer to another computer. First make
sure that the amplitude level of the recorded signal is acceptable (no clipping and not too quiet;
plot the recorded time-domain signal). Then, run the other group’s synchronization algorithm
and visualize the synchronization instant as discussed above. If everything is working, switch
roles with the other group: use your synchronizer and the other group’s transmitter. Finally, try
to figure out the maximum distance for which you can still synchronize to a transmitter. Note
that you may experience difficulties with synchronizing a received signal to a transmitted signal
(especially at long distances); you may have to tune the threshold parameter! Important: Before
you are allowed to proceed with the last Module, you must show us that you can synchronize
your receiver with the other group!

62


	Synchronization
	Synchronize to Transmitter of other Team

