Bits over the Air: Pre-Lab 1

Christoph Studer

[IMPORTANT]

- You can always ask questions (during prelabs and labs, or via email after the labs)
- During the labs, you can also ask us if you want to know more about a specific aspect!
- We are here to help!

A short introduction

Wireless communication

3

We all communicate!

- Source: generates information to be transmitted
- Channel: physical medium (air or water)
- **Destination**: entity that receives information

 Real-world channels introduce noise and interference → unreliable communication

5

How can we make communication reliable?

- Speak louder
- Go closer to destination
- Repeat message
- Rephrase message
- Change language
- (Change pitch)

received signal strength

modulation and coding

 We are naturally using concepts that modern communication systems are using

Abstraction of communication systems

• Simple point-to-point system:

 Almost all possible communication systems (Wi-Fi, LTE, Bluetooth, etc.) look like this!

7

Early history of communication

- Optical telegraphy (wireless):
 - Smoke signals, talking drums, homing pigeons, hydraulic semaphore systems (4BC), beacons, semaphores (until about 1880)

Wired information transfer

- Electrical telegraphy (wired)
 - 1774: Georges-Louis Le Sage designed first electrical telegraph with wire for each letter
 - 1800 1820 : Different electrical telegraph systems with limited distance
 - 1837 : Samuel Morse developed code and machine to transmit and receive over long distances

And then came wireless!

- Wireless telegraphy
 - 1890s : Guglielmo Marconi developed the spark-gap transmitter → send pulses wirelessly

Analog signal transmission

 1900 – 1920 : amplitude modulation (AM) for wireless audio transmission

A digital revolution!

- In 1948, Claude Shannon at Bell Labs developed information theory
 - Digital model for communication
 - Builds the basis of all existing communication systems!
 - Data rates (bits/second) double every 18 months

• Since then, digital communication has evolved into Wi-Fi, LTE-A, Bluetooth, DOCSIS, ...

Modern wireless transceivers

• Transceiver: transmit and receive

 Processing of information is carried out in digital circuits at extremely fast rates

13

Monday overview

Bits over the air

Project schedule

	Monday	Tuesday	Wednesday	Thursday	Friday
1pm-2pm	Pre-Lab 1: Introduction to MATLAB and digital communication	Pre-Lab 2: Signal processing, time-domain, spectrum, and spectrogram	Pre-Lab 3: Generating music with MATLAB and communication system basics	Pre-Lab 4: Communication via amplitude modulation and synchronization	Pre-Lab 5: Bits over the air: transmitting text and images over the air (reliably!)
2pm-3pm	Module 1: MATLAB basics 1	Complete previous modules	Complete previous modules	Complete previous modules	Complete previous modules
	15min break	15min break	15min break	15min break	15min break
3pm-4pm	Module 2: MATLAB basics 2	Module 4: Spectrum and spectrogram	Module 6: Generating music in MATLAB	Module 8: Simple communication system 2	Module 10: Transmitting bits over the air
4pm-5pm	Module 3: Play audio in MATLAB	Module 5: Record audio in MATLAB	Module 7: Simple communication system 1	Module 9: Synchronization	Work on presentations

• Scheduled break from 3:15pm to 3:30pm

17

Remember: this is group work!

- Groups of 2-3 students (matched by skills)
 - Today's groups are fixed; changes upon request
- Try to help each other (within group)
- Ask us if you have any questions!
- Modules contain examples (to explain new concepts) and activities: do both!
 - Feel free to explore a certain concept in more detail if you are interested (do not forget time)

Modules 1 and 2

MATLAB tutorial

19

We will use MATLAB extensively

- The standard software for scientific computing in academia as well as industry
- Used in engineering (not only ECE!), computer science, math, physics, etc.

What is MATLAB?

...a powerful and expensive calculator!

- Proprietary programming language developed by MathWorks
- Particularly useful for matrix operations, digital signal processing, data analysis and visualization, and algorithm design
- Used by virtually every communication system engineer in the world!

21

MATLAB is very simple

```
Command Window

>> a = [1,2,3,4]

a =

1 2 3 4

>> b = a*2

b =

2 4 6 8

>> c = [a,b]

c =

1 2 3 4 2 4 6 8

Æ

Æ

Æ
```

- Example:
 - Define variable a containing a row vector [1 2 3 4]
 - Create new vector \mathbf{b} = $\mathbf{a} \times \mathbf{2} = [2 \ 4 \ 5 \ 6]$
 - Concatenate vectors
 a and b to create
 new vector c
- A great programming language for beginners (Cornell course CS1112)

Modules 1 and 2 teach...

- basic calculations with scalars and vectors
- function plotting (display graphs)
- How to write MATLAB scripts & functions

Module 3

Play audio signals with MATLAB

First steps with signal processing

 We will use loudspeakers to play back digitized signals with MATLAB

25

What is signal processing?

- Signals are functions that convey information, e.g., $f(t) = \sin(t)$ where $t \in \mathbb{R}$
- Examples: Music, speech, temperature, FM radio, painting, etc.

 Signal processing: analyzing, modifying, & synthesizing signals

Digital signal processing

- Our world is analog (continuous), computers cannot store or process analog signals
- Digital signal processing requires conversion of continuous signals into digital information (bits)

Solution: sampling!

• Take a subset of measurements (samples) of the continuous signal f(t)

1/second

- # of samples per second: sampling rate f_s [Hz]
- Collect measurements in a vector

$$\mathbf{s} = [0.1, 0.6, 0.7, 0.3, \dots, -0.2]$$

Sampling enables digital processing

• Sampled signals can be processed in software

• Samples can be played back at sampling rate f_s

29

Project website: catalyst2019.github.io

- Copy MATLAB files (in a zip-folder)
- Extract to computer
- These functions simplify a lot of the repeating tasks!

