Bits over the Air: Pre-Lab 3

Christoph Studer

(IMPORTANT)

- You can always ask questions (during prelabs and labs, or via email* after the labs)
- During the labs, you can also ask us if you want to know more about a specific aspect!
- Please limit the use of social media...!

*studer@cornell.edu

Wednesday overview

Bits over the air

Project schedule

	Monday	Tuesday	Wednesday	Thursday	Friday
1pm-2pm	Pre-Lab 1: Introduction to MATLAB and digital communication	Pre-Lab 2: Signal processing, time-domain, spectrum, and spectrogram	Pre-Lab 3: Generating music with MATLAB and communication system basics	Pre-Lab 4: Communication via amplitude modulation and synchronization	Pre-Lab 5: Bits over the air: transmitting text and images over the air (reliably!)
2pm-3pm	Module 1: MATLAB basics 1	Complete previous modules	Complete previous modules	Complete previous modules	Complete previous modules
	15min break	15min break	15min break	15min break	15min break
3pm-4pm	Module 2: MATLAB basics 2	Module 4: Spectrum and spectrogram	Module 6: Generating music in MATLAB	Module 8: Simple communication system 2	Module 10: Transmitting bits over the air
4pm-5pm	Module 3: Play audio in MATLAB	Module 5: Record audio in MATLAB	Module 7: Simple communication system 1	Module 9: Synchronization	Work on presentations

• Scheduled break from 3:15pm to 3:30pm

5

Remember: this is group work!

- Last chance to switch group! Send me an email: studer@cornell.edu
- Try to help each other (within group)
- This time no inter-group activities $\ensuremath{\otimes}$
 - Reduces "interference" ...

Module 6

Generating music

7

Digital sound synthesis

pulse-code modulation (PCM)

frequency-modulation (FM) synthesis

additive synthesis (and others...)

• Music production is almost exclusively digital (sound synthesis, effects, mixing, recording,...)

Sound synthesis → transmitter

- Digital sound synthesis is signal processing
- Digital synthesizer can be seen as a transmitter of a wireless system
- "Information" is contained in?
 - Notes (pitch)
 - Chords (relative pitch of multiple notes)
 - Amplitude (loudness)
 - Time when played
 - Timbre (tone "color")
- Ears are the receive antennas

You will create a "synthesizer"

 MATLAB script: generates sequence of sine waves of varying pitch, length, & amplitude

Block diagram of the synthesizer

 Engineers extensively use abstraction to design complex systems → block diagrams!

11

You need some new MATLAB concepts

- Concatenating vectors
- If-statement (conditional execution)
- For-loops (repeat similar tasks)

Saving wav-files to hard-drive

very common in most programming languages

 All of these will be used for your final acoustic wireless communication system

You will add more functionality

- Different waveforms than just sine waves
- Polyphonic sounds (multiple notes at once)
- If your group makes progress: sampling

- Piano C4 note recorded at FS=44,100Hz
- If you play only every other sample → C5!
- You can play any note!

You have designed a transmitter

- Your synthesizer already contains all components required for our transmitter!
- The field of signal processing includes:
 - Wireless communication
 - Music production
 - Digital photography
 - Video editing
 - Robot control
 - Self-driving cars
 - and....

.4

Module 7

Design of a digital amplitude modulation (AM) transmitter

17

Digital communication system

- Transmitter takes information bits and creates analog (continuous) waveforms
- Receiver takes output of channel and tries to estimate transmitted information bits

Amplitude modulation (AM)

- We want to transmit information (a signal) at a given carrier frequency f_c
- AM: information signal controls Amplitude amplitude of carrier signal

Mathematical operation

- Assume that information signal s(t) has values only in the range [-1,+1]
- Let $\sin(2\pi f_c t)$ be our carrier signal
- Amplitude modulation:

$$y(t) = \frac{1}{2}(s(t) + 1) * \sin(2\pi f_c t)$$

converts information signal that is in range [-1,+1] to range [0,1]

What happens in the spectrum?

AM "magically" moves information signal in frequency-domain to the carrier frequency!

2

(Why does AM shift signal in spectrum?)

Trigonometric identities:

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha + \beta) + \sin(\alpha - \beta))$$

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

- Fourier series: We can decompose any signal into superposition of sine and cosine waves
- Multiplying sine/cosine with frequency f with sine wave f_c creates new sine/cosine at $f+f_c$

- Amplitude of carrier signal is modulated by information signal (speech in this case)
- AM transmit signal contains speech signal centered around the carrier signal

We want to transmit bits

- In this project, we will stick to AM
- Modern systems use better methods...
- We map bits to amplitude with the rule:

$AM\ transmission = synthesizer$

• bits = [1,0,1,1]

- The duration T per bit must stay constant
- The receiver must distinguish amplitudes!

27

Some updates

Organization

Project website: catalyst2019.github.io

- Updated modules
- Updated presentations
- Updated MATLAB files (in a zip-folder)

To do

- Again, we slightly shuffled the groups \otimes but some students leave early on Saturday...
- Remember your (new) group number
- Then, we walk to the ACCEL labs
- Important: You are only allowed to start working on Module 7 after you talked to us